The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland

Wetlands ◽  
2006 ◽  
Vol 26 (2) ◽  
pp. 455-464 ◽  
Author(s):  
Darren S. Baldwin ◽  
Gavin N. Rees ◽  
Alison M. Mitchell ◽  
Garth Watson ◽  
Janice Williams
2020 ◽  
Vol 9 (41) ◽  
Author(s):  
Ariane L. Peralta ◽  
Regina B. Bledsoe ◽  
Mario E. Muscarella ◽  
Marcel Huntemann ◽  
Alicia Clum ◽  
...  

ABSTRACT Hydrologic changes modify microbial community structure and ecosystem functions, especially in wetland systems. Here, we present 24 metagenomes from a coastal freshwater wetland experiment in which we manipulated hydrologic conditions and plant presence. These wetland soil metagenomes will deepen our understanding of how hydrology and vegetation influence microbial functional diversity.


2020 ◽  
Vol 41 (05) ◽  
pp. 292-299 ◽  
Author(s):  
Jarrad Timothy Hampton-Marcell ◽  
Tifani W. Eshoo ◽  
Marc D. Cook ◽  
Jack A. Gilbert ◽  
Craig A. Horswill ◽  
...  

AbstractExercise can influence gut microbial community structure and diversity; however, the temporal dynamics of this association have rarely been explored. Here we characterized fecal microbiota in response to short term changes in training volume. Fecal samples, body composition, and training logs were collected from Division I NCAA collegiate swimmers during peak training through their in-season taper in 2016 (n=9) and 2017 (n=7), capturing a systematic reduction in training volume near the conclusion of their athletic season. Fecal microbiota were characterized using 16S rRNA V4 amplicon sequencing and multivariate statistical analysis, Spearman rank correlations, and random forest models. Peak training volume, measured as swimming distance, decreased significantly during the study period from 32.6±4.8 km/wk to 11.3±8.1 km/wk (ANOVA, p<0.05); however, body composition showed no significant changes. Coinciding with the decrease in training volume, the microbial community structure showed a significant decrease in overall microbial diversity, a decrease in microbial community structural similarity, and a decrease in the proportion of the bacterial genera Faecalibacterium and Coprococcus. Together these data demonstrate a significant association between short-term changes in training volume and microbial composition and structure in the gut; future research will establish whether these changes are associated with energy balance or nutrient intake.


2018 ◽  
Author(s):  
Dean J. Horton ◽  
Matthew J. Cooper ◽  
Anthony J. Wing ◽  
Peter S. Kourtev ◽  
Donald G. Uzarski ◽  
...  

ABSTRACTO2concentrations often fluctuate over diel timescales within wetlands, driven by temperature, sunlight, photosynthesis, and respiration. These daily fluxes have been shown to impact biogeochemical transformations (e.g. denitrification), which are mediated by the residing microbial community. However, little is known about how resident microbial communities respond to diel dramatic physical and chemical fluxes in freshwater wetland ecosystems. In this study, total microbial (bacterial and archaeal) community structure was significantly related to diel time points in just one out of four distinct freshwater wetlands sampled. This suggests that daily environmental shifts may influence wetlands differentially based upon the resident microbial community and specific physical and chemical conditions of a freshwater wetland. However, when exploring at finer resolutions of the microbial communities within each wetland, subcommunities within two wetlands were found to correspond to fluctuating O2levels. Microbial taxa that were found to be susceptible to fluctuating O2levels within these subnetworks may have intimate ties to metabolism and/or diel redox cycles. This study highlights that freshwater wetland microbial communities are often stable in community structure when confronted with short-term O2fluxes, however, specialist taxa may be sensitive to these same fluxes.


Sign in / Sign up

Export Citation Format

Share Document